Bogomolov multiplier of Lie algebras
نویسندگان
چکیده
In the work of Rostami et al., Bogomolov multiplier a Lie algebra L over field Ω is defined as particular factor subalgebra exterior product L∧L. If finite dimensional, we identify this object certain subgroup second cohomology group H2(L,Ω) by deriving Hopf-Type formula. As an application, affirmatively answer two questions posed Kunyavskiĭ regarding invariance under isoclinism algebras and existence family with multipliers unbounded dimension.
منابع مشابه
Bounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولThe Bogomolov Multiplier of Finite Simple Groups
The subgroup of the Schur multiplier of a finite group G consisting of all cohomology classes whose restriction to any abelian subgroup of G is zero is called the Bogomolov multiplier of G. We prove that if G is quasisimple or almost simple, its Bogomolov multiplier is trivial except for the case of certain covers of PSL(3, 4).
متن کاملA restriction on the Schur multiplier of nilpotent Lie algebras
An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maxim...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2023
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2023.04.024